

Optimierung von Bestandsanlagen

Vortrag im Rahmen der 14. KWK-Impulstagung

11.03.2021

Markus Gailfuß BHKW-Infozentrum Rastatt

Möglichkeiten der Optimierung

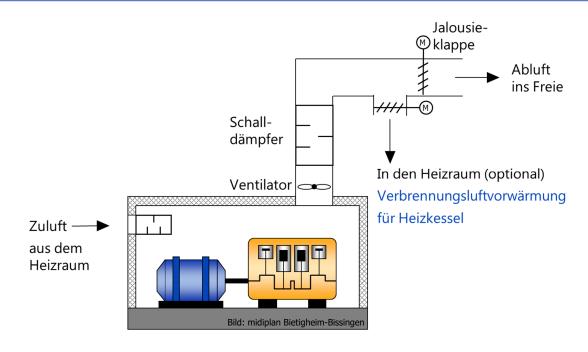
 Akquirierung neuer Kunden

- Stromvermarktung
 Überschussstrom
 - Modernisierung und Ersetzung

- Hydraulische Einbindung
 - Zuluft und Verbrennungsluft
 - andere technische
 Aspekte wie Heizwasser,
 Schmieröl, Kühlwasser,
 Reinigung

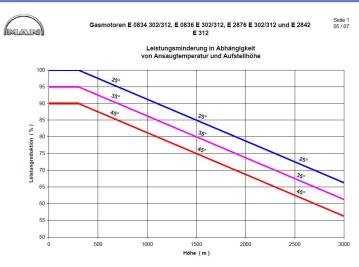
Zuluft und Verbrennungsluft

Zuluft und Verbrennungsluft


Zuleitung Verbrennungsluft

Achtung: Zukünftige Zumischung von Wasserstoff wird bei turboaufgeladenen Magermotoren zu einem höheren Luftzahl führen

- Zu- und Abluft
 - Ableitung der Strahlungswärme und der Generatorabwärme aus der Kapsel
 - Zuführung von Verbrennungsluft
- Auslegungskriterien
- max. Außentemperatur (meist 32 35 °C) / max. Kapseltemperatur (meist 40 °C)
- max. Schallpegel an Lüftungsöffnungen
- leichter Überdruck in der Kapsel



Zuluft und Verbrennungsluft

Verbrennungsluft – Auswirkungen Druck und Temperatur

- bei steigender Ansauglufttemperatur sowie bei steigender Höhe sinkt die Dichte der Luft und somit der volumetrische Anteil des Sauerstoffs
- dadurch reduziert sich die Motorleistung und die Effizienz

Verbrennungsluft – Auswirkungen Druck und Temperatur

 verschmutzte oder falsch dimensionierte Zuluftgitter führen zu einer Druckminderung und ggf. aufgrund unzureichender Belüftung zu höheren Lufttemperaturen

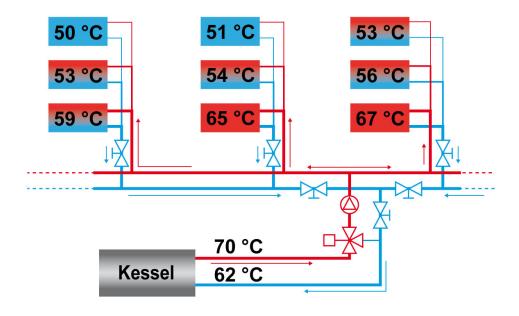
Hydraulische Einbindung

Hydraulische Probleme

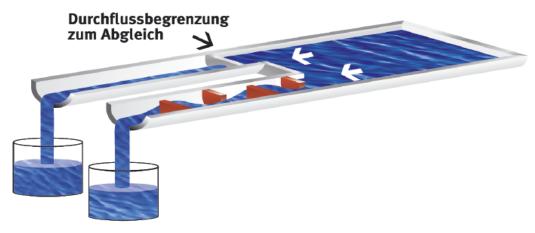
Da BHKW-Anlagen durch das Heizwasser "gekühlt" werden, dürfen die max. Rücklauftemperaturen von Standard-BHKW-Anlagen in der Regel 70 °C nicht überschreiten (große BHKW > 1 MW auch teilweise bis zu 80° C).

Oft müssen daher die Verbraucherheizkreise angepasst werden, mit Maßnahmen wie:

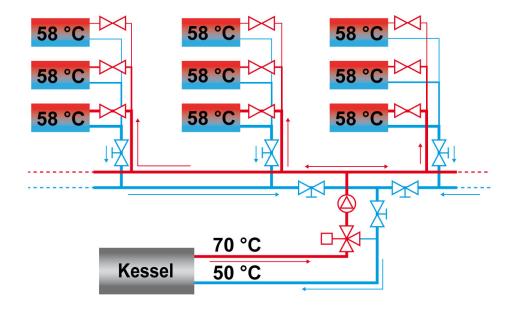
- Schließen von Überströmstrecken (Bypässe)
- Umbau von Umlenkschaltungen
- Einbau von Rückschlagklappen
- Einbau von Rücklauftemperaturbegrenzern
- Einsatz geregelter Pumpen
- Hydraulische Optimierung


Hydraulik ohne Abgleich

Quelle: www.vdzev.de

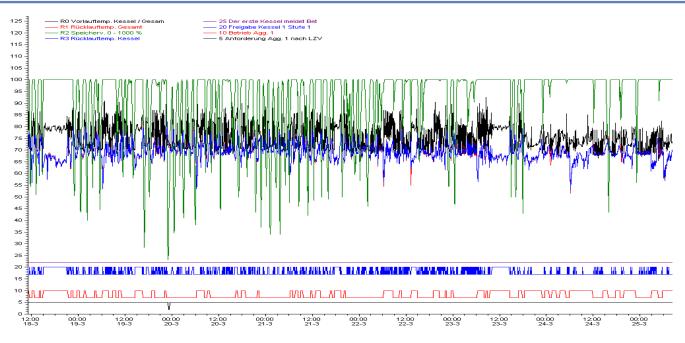


Hydraulik ohne Abgleich


Hydraulik mit Abgleich

Quelle: www.vdzev.de

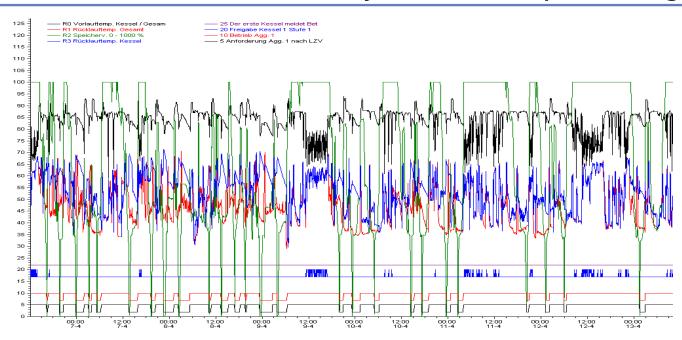
Hydraulik mit Abgleich



Hydraulikoptimierung im Bestand Ausgangssituation und Probleme

- Versorgungsareal mit zwei verschiedenen Gebäuden
- veraltete Hydraulik mit Überströmstrecken
- Überströmungen bei der hydraulischen Einbindung der Lüftungsanlage
- hohe Temperaturen am Hauptrücklauf
- BHKW taktete zu häufig
- Kessel ist eher in Betrieb als BHKW-Anlage
- prognostizierten Laufzeiten vom BHKW wurden nicht erreicht
- BHKW-Effizienzwerte liegen unter dem Soll
- geringe bis keine Brennwertnutzung im Brennwertkessel und im Brennwertwärmetauscher des BHKW

Hydraulikoptimierung im Bestand BHKW-Betriebsdaten vor hydraulischer Optimierung



Hydraulikoptimierung im Bestand Umgesetzte Maßnahmen und Ergebnisse

- Umbau hydraulischer Schaltungen der Lüftungsanlagen
- · Schließen von Bypässen am Unterverteiler
- · Anpassung der Pumpenförderleistung im Nahwärmeverbund
- Umbau der Trinkwarmwasserversorgung auf Frischwasserladestationen
- · deutliche Erhöhung der Temperaturspreizung zwischen Vorlauf und Rücklauf
- · deutlich niedrigere Rücklauftemperaturen
- bessere Brennwertnutzung bei BHKW und Kessel
- Kessel war nur in Betrieb, wenn Wärmebereitstellung durch das BHKW nicht ausreichend war
- geringere Taktung von BHKW und Kessel
- optimalere Nutzung des BHKW-Pufferspeichers

Hydraulikoptimierung im Bestand BHKW-Betriebsdaten nach hydraulischer Optimierung

Hydraulikoptimierung im Bestand Betriebskennzahlen BHKW

Betriebskennzahlen BHKW	vor Umbau der Hydraulik	nach Umbau der Hydraulik
Durchschnittliche elektrische Leistung	46,3 kW	49,9 kW
Durchschnittliche thermische Leistung	91,5 kW	107,3 kW
Durchschnittliche Leistungsaufnahme	156,1 kW	164,7 kW
Elektrische Effizienz	29,64%	30,32%
Thermische Effizienz	58,60%	65,19%
Summe	88,24%	95,51%
Laufzeit pro Tag	17 h	21 h
Betriebsstunde pro Start/Stopp	4,0 h	12,8 h
Start/Stopp pro Tag	4,35	1,67

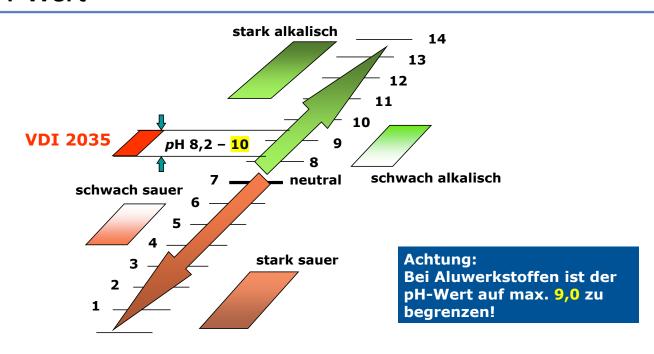
Investitionsförderung Bundesförderung für effiziente Gebäude (BEG)

- Ersatz von Heizungs-Umwälz- und Warmwasser-Zirkulations-Pumpen durch hocheffiziente Umwälzpumpen und Warmwasser-Zirkulationspumpen
- Ersatz, Erweiterung und erstmaliger Einbau von Pufferspeichern
- Heizungsoptimierung durch einen hydraulischen Abgleich bei bestehenden Heizsystemen
- Erweiterung oder Sanierung von Nahwärmenetzen innerhalb gleicher Gebäude- und Grundstücksflächen
- Wärmedämmung von Wärmeverteilleitungen und Armaturen
- Schallreduzierende Maßnahmen für Geräusche der Heizungsanlage in schutzbedürftigen Räumen
- Filter, Schmutzfänger, Abscheider zur Erhaltung der Funktionalität, Effizienz und Lebensdauer von Heizungsanlagen

Investitionsförderung Bundesförderung für effiziente Gebäude (BEG)

- Förderhöhe für Maßnahmen zur Heizungsoptimierung:
 20 % der Gesamtkosten
- Förderhöhe für Maßnahmen zur energetischen Fachplanung und Baubegleitung:
 50 % der Gesamtkosten
- Beantragung der Förderung vor Maßnahmenbeginn
- Bewilligungszeitraum 24 Monate nach Erteilung des Zuwendungsbescheids, Verlängerbar auf Antrag auf bis zu 48 Monate
- Ausführende Behörde: Bundesamt für Wirtschaft und Ausfuhrkontrolle (BAFA)

Heizwasserqualität


Erlaubte Gesamthärte VDI 2035 Blatt 1

Sind die angegebenen Maximalgrenzen der zulässigen Wasserhärte überschritten, ist zu enthärten, zu entsalzen oder zu konditionieren.

Gesamtheizleistung	Sţ	n	
in kW	< 20 l/kW	≥ 20 l/kW bis < <mark>40</mark> l/kW	≥ 40 l/kW
≤ 50	Keine Anforderungen bzw. bei Umlaufheizern: ≤ 3,0 mol/m³ (16,8 °dH)	≤ 2,0 mol/m³ (11,2 °dH)	≤ 0,02 mol/m³ (0,11 °dH)
> 50 bis ≤ 200	\leq 2,0 mol/m ³ (11,2 °dH)	≤ 1,5 mol/m³ (8,4 °dH)	≤ 0,02 mol/m³ (0,11 °dH)
> 200 bis ≤ 600	≤ 1,5 mol/m³ (8,4 °dH)	\leq 0,02 mol/m ³ (0,11 °dH)	≤ 0,02 mol/m³ (0,11 °dH)
> 600	≤ 0,02 mol/m³ (0,11 °dH)	\leq 0,02 mol/m ³ (0,11 °dH)	≤ 0,02 mol/m³ (0,11 °dH)

pH-Wert

Wirtschaftlichkeit

Wirtschaftliche Optimierungsmöglichkeiten

Wirtschaftliche Optimierungsmöglichkeiten

- Neue Wärmekunden akquirieren
 - Wann fällt der zusätzliche Wärmebedarf an?
 Existieren zu dieser Zeit noch freie KWK-Kapazitäten?
- Stromverkauf an Dritte
 - ABER: Strommengenabgrenzung wegen EEG-Umlage
- Modernisierung oder Ersetzung
 - Bleibt dies nach der Evaluierung 2022/2023 noch bestehen?
 - Bestandsschutzübernahme EEG-Umlage möglich?


...vielen Dank

Markus Gailfuß
BHKW-Consult / BHKW-Infozentrum
Rauentaler Straße 22/1
76437 Rastatt
07222 968 673 0
markus.gailfuss@bhkw-consult.de


https://www.bhkw-infozentrum.de https://www.bhkw-consult.de https://www.bhkw-konferenz.de

https://www.kwkg2020.de (ab Ostern 2021)

Kostenlose und kostenpflichtige Online-Seminare

...seit März 2021 auch mit zahlreichen Rhetorik- und Moderations-Seminaren

Freuen Sie sich auf unsere neue Internetseite über Wasserstoff in der Energiewende – ab Juni 2021

